78 research outputs found

    Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals

    Get PDF
    Estimation of parameters of a diffusion based on discrete time observations poses a difficult problem due to the lack of a closed form expression for the likelihood. From a Bayesian computational perspective it can be casted as a missing data problem where the diffusion bridges in between discrete-time observations are missing. The computational problem can then be dealt with using a Markov-chain Monte-Carlo method known as data-augmentation. If unknown parameters appear in the diffusion coefficient, direct implementation of data-augmentation results in a Markov chain that is reducible. Furthermore, data-augmentation requires efficient sampling of diffusion bridges, which can be difficult, especially in the multidimensional case. We present a general framework to deal with with these problems that does not rely on discretisation. The construction generalises previous approaches and sheds light on the assumptions necessary to make these approaches work. We define a random-walk type Metropolis-Hastings sampler for updating diffusion bridges. Our methods are illustrated using guided proposals for sampling diffusion bridges. These are Markov processes obtained by adding a guiding term to the drift of the diffusion. We give general guidelines on the construction of these proposals and introduce a time change and scaling of the guided proposal that reduces discretisation error. Numerical examples demonstrate the performance of our methods

    Simulation of elliptic and hypo-elliptic conditional diffusions

    Full text link
    Suppose XX is a multidimensional diffusion process. Assume that at time zero the state of XX is fully observed, but at time T>0T>0 only linear combinations of its components are observed. That is, one only observes the vector LXTL X_T for a given matrix LL. In this paper we show how samples from the conditioned process can be generated. The main contribution of this paper is to prove that guided proposals, introduced in Schauer et al. (2017), can be used in a unified way for both uniformly and hypo-elliptic diffusions, also when LL is not the identity matrix. This is illustrated by excellent performance in two challenging cases: a partially observed twice integrated diffusion with multiple wells and the partially observed FitzHugh-Nagumo model

    Applied Measure Theory for Probabilistic Modeling

    Get PDF
    Probabilistic programming and statistical computing are vibrant areas in the development of the Julia programming language, but the underlying infrastructure dramatically predates recent developments. The goal of MeasureTheory.jl is to provide Julia with the right vocabulary and tools for these tasks. In the package we introduce a well-chosen set of notions from the foundations of probability together with powerful combinators and transforms, giving a gentle introduction to the concepts in this article. The task is foremost achieved by recognizing measure as the central object. This enables us to develop a proper concept of densities as objects relating measures with each others. As densities provide local perspective on measures, they are the key to efficient implementations. The need to preserve this computationally so important locality leads to the new notion of locally-dominated measure solving the so-called base measure problem and making work with densities and distributions in Julia easier and more flexible

    Fast and scalable non-parametric Bayesian inference for Poisson point processes

    Get PDF
    We study the problem of non-parametric Bayesian estimation of the intensity function of a Poisson point process. The observations are nn independent realisations of a Poisson point process on the interval [0,T][0,T]. We propose two related approaches. In both approaches we model the intensity function as piecewise constant on NN bins forming a partition of the interval [0,T][0,T]. In the first approach the coefficients of the intensity function are assigned independent gamma priors, leading to a closed form posterior distribution. On the theoretical side, we prove that as n→∞,n\rightarrow\infty, the posterior asymptotically concentrates around the "true", data-generating intensity function at an optimal rate for hh-H\"older regular intensity functions (0<h≤10 < h\leq 1). In the second approach we employ a gamma Markov chain prior on the coefficients of the intensity function. The posterior distribution is no longer available in closed form, but inference can be performed using a straightforward version of the Gibbs sampler. Both approaches scale well with sample size, but the second is much less sensitive to the choice of NN. Practical performance of our methods is first demonstrated via synthetic data examples. We compare our second method with other existing approaches on the UK coal mining disasters data. Furthermore, we apply it to the US mass shootings data and Donald Trump's Twitter data.Comment: 45 pages, 22 figure

    Bayesian wavelet de-noising with the caravan prior

    Get PDF
    According to both domain expert knowledge and empirical evidence, wavelet coefficients of real signals tend to exhibit clustering patterns, in that they contain connected regions of coefficients of similar magnitude (large or small). A wavelet de-noising approach that takes into account such a feature of the signal may in practice outperform other, more vanilla methods, both in terms of the estimation error and visual appearance of the estimates. Motivated by this observation, we present a Bayesian approach to wavelet de-noising, where dependencies between neighbouring wavelet coefficients are a priori modelled via a Markov chain-based prior, that we term the caravan prior. Posterior computations in our method are performed via the Gibbs sampler. Using representative synthetic and real data examples, we conduct a detailed comparison of our approach with a benchmark empirical Bayes de-noising method (due to Johnstone and Silverman). We show that the caravan prior fares well and is therefore a useful addition to the wavelet de-noising toolbox.Comment: 32 pages, 15 figures, 4 table

    Nonparametric Bayesian estimation of a H\"older continuous diffusion coefficient

    Get PDF
    We consider a nonparametric Bayesian approach to estimate the diffusion coefficient of a stochastic differential equation given discrete time observations over a fixed time interval. As a prior on the diffusion coefficient, we employ a histogram-type prior with piecewise constant realisations on bins forming a partition of the time interval. Specifically, these constants are realizations of independent inverse Gamma distributed randoma variables. We justify our approach by deriving the rate at which the corresponding posterior distribution asymptotically concentrates around the data-generating diffusion coefficient. This posterior contraction rate turns out to be optimal for estimation of a H\"older-continuous diffusion coefficient with smoothness parameter 0<λ≤1.0<\lambda\leq 1. Our approach is straightforward to implement, as the posterior distributions turn out to be inverse Gamma again, and leads to good practical results in a wide range of simulation examples. Finally, we apply our method on exchange rate data sets

    Automatic Backward Filtering Forward Guiding for Markov processes and graphical models

    Full text link
    We incorporate discrete and continuous time Markov processes as building blocks into probabilistic graphical models with latent and observed variables. We introduce the automatic Backward Filtering Forward Guiding (BFFG) paradigm (Mider et al., 2020) for programmable inference on latent states and model parameters. Our starting point is a generative model, a forward description of the probabilistic process dynamics. We backpropagate the information provided by observations through the model to transform the generative (forward) model into a pre-conditional model guided by the data. It approximates the actual conditional model with known likelihood-ratio between the two. The backward filter and the forward change of measure are suitable to be incorporated into a probabilistic programming context because they can be formulated as a set of transformation rules. The guided generative model can be incorporated in different approaches to efficiently sample latent states and parameters conditional on observations. We show applicability in a variety of settings, including Markov chains with discrete state space, interacting particle systems, state space models, branching diffusions and Gamma processes
    • …
    corecore